skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weygand, James M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. On 10 May 2024, a series of coronal mass ejections were detected at Earth followed by one of the most powerful geomagnetic storms since November 2003. Leveraging a multi–technique approach, this paper provides an account of the ground geomagnetic response during the 10–11 May 2024 extreme geomagnetic storm. More specifically, we show that at the mid-latitudes in the American sector, the storm produced extreme ground geomagnetic field perturbations between 01:50 UT and 02:30 UT on 11 May. Then using the Spherical Elementary Current System method, it is shown that the perturbations were associated with an intense westward propagating auroral westward electrojet current. Finally, with the aid of auroral all-sky images from the Missouri Skies Observatory, we demonstrate that an intense isolated substorm event with onset located between the Great Lakes region and the East Coast United States was the main source of the extreme westward electrojet current and the geomagnetic field perturbations at these typical mid-latitude locations. This study emphasizes the increased risk associated with expansion of the auroral oval into the mid-latitudes during extreme geomagnetic activity. 
    more » « less
    Free, publicly-accessible full text available September 19, 2026
  2. Abstract Auroral substorms that move from auroral (<70°) to polar (>70°) magnetic latitudes (MLAT) are known to occur preferentially when a high‐speed solar wind stream passes by Earth. We report here on observations that occurred during a ∼75‐min interval with high‐speed solar wind on 28 November 2022 during which auroral arcs and very large geomagnetic disturbances (GMDs), also known as magnetic perturbation events (MPEs), with amplitude >9 nT/s = 540 nT/min moved progressively poleward at eight stations spanning a large region near and north of Hudson Bay, Canada shortly before midnight local time. Sustained GMD activity with amplitudes >3 nT/s appeared at each station for durations from 13 to 25 min. Spherical Elementary Currents Systems maps showed the poleward movement of a large‐scale westward electrojet as well as mesoscale electrojet structures and highly localized up/down pairs of vertical currents near these stations when the largest GMDs were observed. This study is consistent with other recent studies showing that very large poleward‐progressing GMDs can occur under high Vsw conditions, but is the first to document the sustained occurrence of large GMDs over such a wide high‐latitude region. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Abstract Ultraviolet images of Earth's polar regions obtained by high altitude spacecraft have proved to be immensely useful for documenting numerous features of the aurora and understanding the coupling between Earth's magnetosphere and ionosphere. In this study we have examined images obtained by the far ultraviolet Spectrographic Imager camera on the IMAGE satellite during the first three years of its mission (2000–2002) for comparison with observations of large geomagnetic disturbances (GMDs) by ground‐based magnetometers in eastern Arctic Canada. To our knowledge, this is the first study to investigate the use of high‐altitude imager data to identify the global context of GMDs. We found that rapid auroral motions or localized intensifications visible in these images coincide with regions of largedB/dtas well as localized and closely spaced up/down vertical currents and increased equivalent ionospheric currents, but one of the two events presented did not appear to be related to substorm processes. These magnetic perturbations and currents can appear or disappear in a few tens of seconds, thus highlighting the importance of images with a high cadence. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract In this study, we investigate the effects caused by interplanetary (IP) shock impact angles on the subsequent grounddB/dtvariations during substorms. IP shock impact angles have been revealed as a major factor controlling the subsequent geomagnetic activity, meaning that shocks with small inclinations with the Sun‐Earth line are more likely to trigger higher geomagnetic activity resulting from nearly symmetric magnetospheric compressions. Such field variations are linked to the generation of geomagnetically induced currents (GICs), which couple to artificial conductors on the ground leading to deleterious consequences. We use a sub‐set of a shock data base with 237 events observed in the solar wind at L1 upstream of the Earth, and large arrays of ground magnetometers at stations located in North America and Greenland. The spherical elementary current system methodology is applied to the geomagnetic field data, and field‐aligned‐like currents in the ionosphere are derived. Then, such currents are inverted back to the ground anddB/dtvariations are computed. Geographic maps are built with these field variations as a function of shock impact angles. The main findings of this investigation are: (a) typicaldB/dtvariations (5–10 nT/s) are caused by shocks with moderate inclinations; (b) the more frontal the shock impact, the more intense and the more spatially defined the ionospheric current amplitudes; and (c) nearly frontal shocks trigger more intensedB/dtvariations with larger equatorward latitudinal expansions. Therefore, the findings of this work provide new insights for GIC forecasting focusing on nearly frontal shock impacts on the magnetosphere. 
    more » « less
  5. Abstract Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high‐speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast‐coronal mass ejection driven storms. 
    more » « less
  6. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less
  7. Abstract Our current knowledge of the geomagnetic poleward and equatorward boundary dynamics is limited, particularly, how deep those two latitudinal boundaries can extend into lower geomagnetic latitudes during magnetic storms. We want to understand the motion of the boundary because it is important in terms of the location and magnitude of the effects of geomagnetic disturbances associated with storms on the ground. In this study we derive spherical elementary ionospheric currents from ground magnetometer arrays covering North America and Greenland during six magnetic storms in 2015 and 2018. With two dimensional maps of the auroral region current, we select the equatorward boundary of the region 2 currents by‐eye and fit the boundary with an ellipse to derive the location of the equatorward boundary at magnetic midnight. We have obtained over 500 boundaries and find that the midnight boundary location varies between 45° and 66° magnetic latitude. We examine the influence of the interplanetary magnetic field (IMF), solar wind plasma, and geomagnetic indices on the location of the magnetic midnight equatorial boundary and find that the equatorial boundary location is best correlated with the IMF Bz, VBz, and the Sym‐H index. We demonstrate that as the Bz component becomes more negative, the magnitude of VBz increases, and the magnitude of the Sym‐H index increases, the magnetic midnight equatorial boundary shifts equatorward during periods of moderate to high geomagnetic activity. 
    more » « less
  8. null (Ed.)
    Magnetohydrodynamic (MHD) turbulent flows are found in the solar wind, the magnetosheath and the magnetotail plasma sheet. In this paper, we review both observational and theoretical evidence for turbulent flow in the magnetotail. MHD simulations of the global magnetosphere for southward interplanetary magnetic field (IMF) exhibit nested vortices in the earthward outflow from magnetic reconnection that are consistent with turbulence. Similar simulations for northward IMF also exhibit enhanced vorticity consistent with turbulence. These result from Kelvin-Helmholtz (KH) instabilities. However, the turbulent flows association with reconnection fill much of the magnetotail while the turbulent flows associated with the KH instability are limited to a smaller region near the magnetopause. Analyzing turbulent flows in the magnetotail is difficult because of the limited extent of the tail and because the flows there are usually sub-magnetosonic. Observational analysis of turbulent flows in the magnetotail usually assume that the Taylor frozen-in-flow hypothesis is valid and compare power spectral density vs. frequency with spectral indices derived for fluid turbulence by Kolmogorov in 1941. Global simulations carried out for actual magnetospheric substorms in the tail enable the results of the simulations to be compared directly with observed power spectra. The agreement between the two techniques provides confidence that the plasma sheet plasma is actually turbulent. The MHD results also allow us to calculate the power vs. wave number; results that also support the idea that the tail is turbulent. 
    more » « less
  9. Abstract We present a comprehensive statistical analysis of high‐frequency transient‐large‐amplitude (TLA) magnetic perturbation events that occurred at 12 high‐latitude ground magnetometer stations throughout Solar Cycle 24 from 2009 to 2019. TLA signatures are defined as one or more second‐timescale dB/dtinterval with magnitude ≥6 nT/s within an hour event window. This study characterizes high‐frequency TLA events based on their spatial and temporal behavior, relation to ring current activity, auroral substorms, and nighttime geomagnetic disturbance (GMD) events. We show that TLA events occur primarily at night, solely in the high‐latitude region above 60° geomagnetic latitude, and commonly within 30 min of substorm onsets. The largest TLA events occurred more often in the declining phase of the solar cycle when ring current activity was lower and solar wind velocity was higher, suggesting association to high‐speed streams caused by coronal holes and subsequent corotating interaction regions reaching Earth. TLA perturbations often occurred preceding or within the most extreme nighttime GMD events that have 5–10 min timescales, but the TLA intervals were often even more localized than the ∼300 km effective scale size of GMDs. We provide evidence that shows TLA‐related GMD events are associated with dipolarization fronts in the magnetotail and fast flows toward Earth and are closely temporally associated with poleward boundary intensifications (PBIs) and auroral streamers. The highly localized behavior and connection to the most extreme GMD events suggests that TLA intervals are a ground manifestation of features within rapid and complex ionospheric structures that can drive geomagnetically induced currents. 
    more » « less
  10. Abstract The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring. 
    more » « less